Bis(μ-oxo) versus mono(μ-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation.
نویسندگان
چکیده
Dicopper species have been identified as the active sites in converting methane to methanol in Cu-zeolites. To understand the formation of these copper cores in mordenite, we used in situ time-resolved X-ray absorption spectroscopy during heat treatment. Significant dehydration enabled the reduction of the copper cores, after which molecular oxygen was cleaved. The activated oxygen bridged two copper atoms to make the reactive precursor for the activation of methane. Even though the active bridging oxygen was detected, the XAS data were unable to distinguish a bis(μ-oxo)dicopper core from a mono(μ-oxo)dicopper core since XAS measures the average structure of the total copper population and the sample contains a mixture of copper species. We therefore used DFT calculations to understand the energetics of the formation of the active copper species and found that if a copper dimer exists in a zeolite, the mono(μ-oxo)dicopper species is an energetically plausible structure. This is in contrast to molecular dicopper cores where the bis(μ-oxo)dicopper core is preferentially formed.
منابع مشابه
Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5.
The reactive oxidizing species in the selective oxidation of methane to methanol in oxygen activated Cu-ZSM-5 was recently defined to be a bent mono(μ-oxo)dicopper(II) species, [Cu(2)O](2+). In this communication we report the formation of an O(2)-precursor of this reactive site with an associated absorption band at 29,000 cm(-1). Laser excitation into this absorption feature yields a resonance...
متن کاملImproved Efficiency for Partial Oxidation of Methane by Controlled Copper Deposition on Surface‐Modified ZSM‐5
The mono(μ-oxo) dicopper cores present in the pores of Cu-ZSM-5 are active for the partial oxidation of methane to methanol. However, copper on the external surface reduces the ratio of active, selective sites to unselective sites. More efficient catalysts are obtained by controlling the copper deposition during synthesis. Herein, the external exchange sites of ZSM-5 samples were passivated by ...
متن کاملBis-μ-oxo and μ-η2: η2-peroxo dicopper complexes studied within (time-dependent) density-functional and many-body perturbation theory
Based on the equilibrium geometries of [Cu2(dbdmed)2O2](2+) and [Cu2(en)2O2](2+) obtained within density-functional theory, we investigate their molecular electronic structure and optical response. Thereby results from occupation-constrained as well as time-dependent DFT (ΔSCF and TDDFT) are compared with Green's function-based approaches within many-body perturbation theory such as the GW appr...
متن کاملComputational characterization of a mechanism for the copper-catalyzed aerobic oxidative trifluoromethylation of terminal alkynes.
A reaction mechanism for the copper(i)-catalyzed oxidative aerobic trifluoromethylation of terminal alkynes has been determined by DFT calculations. The transmetalation of CF3(-) to copper appears to be a ligand replacement process independent of the metal. The dioxygen activation follows the sequence η(1)-superoxocopper(ii), μ-η(2):η(2)-peroxodicopper(ii) and bis(μ-oxo)-dicopper(iii).
متن کاملElectron-transfer reduction of dinuclear copper peroxo and bis-μ-oxo complexes leading to the catalytic four-electron reduction of dioxygen to water.
The four-electron reduction of dioxygen by decamethylferrocene (Fc*) to water is efficiently catalyzed by a binuclear copper(II) complex (1) and a mononuclear copper(II) complex (2) in the presence of trifluoroacetic acid in acetone at 298 K. Fast electron transfer from Fc* to 1 and 2 affords the corresponding Cu(I) complexes, which react at low temperature (193 K) with dioxygen to afford the η...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 12 شماره
صفحات -
تاریخ انتشار 2015